具有面心立方点阵的vc碳化物,稳定性高,约在900~950℃温度开始溶解,在1100℃以上开始大量溶解(溶解终结温度为1413℃)[17];它在500~700℃回火过程中析出,不易聚集长大,能作为钢中强化相。中等碳化物形成元素w 、mo形成的m2c和mc 碳化物具有密排和简单六方点阵,它们的稳定性较差些,亦具较高的硬度、熔点和溶解温度,仍可作为在500~650℃范围使用钢的强化相。m23c6(如cr23c6等)具有复杂立方点阵,稳定性更差,结合强度较弱,熔点和溶解温度较低(在1090℃溶入a中),只有在少数耐热钢中经综合合金化后才有较高稳定性(如(crfemow)23c6,可作为强化相。具有复杂六方结构的m7c3(如cr7c3、 fe4cr3c3或fe2cr5c3)的稳定性更差,它和fe3c类碳化物一样很易溶解和析出,具有较大的聚集长大速度,一般不能作为高温强化相。
铬是合金工具钢中最普遍含有的和价廉的合金元素。在美国h型热作模具钢中含cr量在2%~12%范围。在我国合金工具钢(gb/t1299)的37个钢号中,除8crsi和9mn2v外都含有cr。
钢中合金c化物的行为与其自身的稳定性有关,实际上,合金c化物的结构、稳定性与相应c化物形成元素的d电子壳层和s电子壳层的电子欠缺程度相关[17]。随着电子欠缺程度下降,金属原子半径随之减小,碳和金属元素的原子半径比rc/rm增加,合金c化物由间隙相向间隙化合物变化,c化物的稳定性减弱,其相应熔化温度和在a中溶解温度降低,其生成自由能的絕對值减小,相应的硬度值下降。
另外还要考虑合金元素的交互作用影响,如当钢中含铬、钼和釩时,cr>3%[14]时,cr能阻止v4c3的生成和推迟mo2c的共格析出,v4c3和mo2c是提高钢材的高温强度和抗回火性的强化相[14],这种交互作用提高该钢耐热变形性能。
湖北日盛科技有限公司
0757 23837388
