北京天演融智软件有限公司
pc-ord对电子表格中的生态数据进行多变量分析。pc-ord的重点是非参数工具、图形表示、随机化测试和自举置信区间的社区数据分析。除了用于转换数据和管理文件的实用程序之外,pc-ord还提供了许多统计数据包中不可用的排序和分类技术:cca、dca、指示物种分析、mantel试验、部分mantel试验、mrpp、pcoa、permanova、rda、双向聚类、twinspan、beals平滑、多样性指数、物种列表、许多排序叠加方法(定量、符号编码、颜色编码、网格、联合图、双情节、连续向量)、各种旋转方法、3d排序、bray-curtis排序、城市街区距离测量、物种面积曲线、树数据摘要、发布质量树图、自动驾驶模式的非度量多维范围(nms或nmds)。可以分析大型数据集。只要您计算机的内存够,大多数操作接受多32,000行或32,000列和多536,848,900个矩阵元素的矩阵。完整的手册包括上下文敏感的帮助系统。
新的分析方法
? 第四角分析
通过样本单元x物种矩阵将物种性状与环境变量联系起来的方法学问题,因为是四个基本矩阵的排列(参看dray和legendre(2008,fig.1a)以及mccune和grace(2002,fig.2.1)的性状x环境位置),因此被称为第四角问题。第四角分析提供了这些矩阵之间的链路强度的统计测试。对于第四角分析的理论和数学的详细解释见legendre et al.(1997),dray和legendre(2008),ter braak et al,(2002)和dray et al.(2004)。
? fuzzy set (fso)
模糊集合排序应用模糊集合理论指导生态排序中的梯度分析。这种排序方法需要用户假设物种群落和环境变量或其他预测因子之间的关系。预测因子是常见的环境变量,但它们也可以是第二组物种群落,或任何与社区矩阵相同行数的定量数据集。社区数据被放置在主矩阵中,并且第二集合位于第二矩阵中。结果排序是物种空间中样本单位的排序。物种可以叠加在一个单一的加权平均步长排序。
pc-ord对电子表格中的生态数据进行多变量分析。pc-ord的重点是非参数工具、图形表示、随机化测试和自举置信区间的社区数据分析。除了用于转换数据和管理文件的实用程序之外,pc-ord还提供了许多统计数据包中不可用的排序和分类技术:cca、dca、指示物种分析、mantel试验、部分mantel试验、mrpp、pcoa、permanova、rda、双向聚类、twinspan、beals平滑、多样性指数、物种列表、许多排序叠加方法(定量、符号编码、颜色编码、网格、联合图、双情节、连续向量)、各种旋转方法、3d排序、bray-curtis排序、城市街区距离测量、物种面积曲线、树数据摘要、发布质量树图、自动驾驶模式的非度量多维范围(nms或nmds)。可以分析大型数据集。只要您计算机的内存够,大多数操作接受多32,000行或32,000列和多536,848,900个矩阵元素的矩阵。完整的手册包括上下文敏感的帮助系统。
? 第四角问题
因为是四个基本矩阵的排列(参见dray和legendre(2008,fig.1a)和mccune 和grace(2002,fig.2.1)的形状x环境位置),所以通过样本单元x物种矩阵将物种性状与环境变量联系起来的方法问题被称为第四角问题。第四角分析提供了这些矩阵之间的链路强度的统计测试。第四角分析理论与数学的详细解释请参看legendre et al. (1997), dray和legendre (2008), ter braak et al, (2012), 和 dray et al. (2014)。
? 二元分类
如果已给变量中,有n个分类(每个分类级别有独特的值标签),然后将生成n个新的二进制(0/1)变量。每个新变量将被指定值为0或1的q变量。
pc-ord对电子表格中的生态数据进行多变量分析。pc-ord的重点是非参数工具、图形表示、随机化测试和自举置信区间的社区数据分析。除了用于转换数据和管理文件的实用程序之外,pc-ord还提供了许多统计数据包中不可用的排序和分类技术:cca、dca、指示物种分析、mantel试验、部分mantel试验、mrpp、pcoa、permanova、rda、双向聚类、twinspan、beals平滑、多样性指数、物种列表、许多排序叠加方法(定量、符号编码、颜色编码、网格、联合图、双情节、连续向量)、各种旋转方法、3d排序、bray-curtis排序、城市街区距离测量、物种面积曲线、树数据摘要、发布质量树图、自动驾驶模式的非度量多维范围(nms或nmds)。可以分析大型数据集。只要您计算机的内存够,大多数操作接受多32,000行或32,000列和多536,848,900个矩阵元素的矩阵。完整的手册包括上下文敏感的帮助系统。
? 基于距离的冗余分析(dbrda)
基于距离的冗余分析(drbda)类似于冗余分析(rda),除了主矩阵由它的主坐标代替,使用您选择的距离度量。这个变体的目的是允许您选择non-euclidean距离度量,如sorensen(bray-curtis),这个已经证明在群落生态学中是有效的。
? categorical counts
categorical counts提供一种用给定范畴值跟踪案例数量的方法(行,通常指示例单元)。默认情况下,对选定矩阵中的所有分类变量都执行此操作。提供了快速评估类别的频率,对于实验设计中的平衡或不同类别的采样有效性等问题是有用的。
? functional diversity
functional diversity分析了样本单元x物种矩阵与物种x性状矩阵的组合。pc-ord中的功能多样性措施的原理和使用在以下主题中描述。
其他已有的分析方法
? gower distance
gower(1971a)系数在相似性或相异性度量中是非常不寻常的,因为它可以基于定性(分类)数据、定量数据或两者的混合物来计算。分类数据作为匹配问题来处理:共享定性属性的项从该属性接收相似性单元。参看legendre和legendre(1998)对这个方法的详细描述。
pc-ord对电子表格中的生态数据进行多变量分析。pc-ord的重点是非参数工具、图形表示、随机化测试和自举置信区间的社区数据分析。除了用于转换数据和管理文件的实用程序之外,pc-ord还提供了许多统计数据包中不可用的排序和分类技术:cca、dca、指示物种分析、mantel试验、部分mantel试验、mrpp、pcoa、permanova、rda、双向聚类、twinspan、beals平滑、多样性指数、物种列表、许多排序叠加方法(定量、符号编码、颜色编码、网格、联合图、双情节、连续向量)、各种旋转方法、3d排序、bray-curtis排序、城市街区距离测量、物种面积曲线、树数据摘要、发布质量树图、自动驾驶模式的非度量多维范围(nms或nmds)。可以分析大型数据集。只要您计算机的内存够,大多数操作接受多32,000行或32,000列和多536,848,900个矩阵元素的矩阵。完整的手册包括上下文敏感的帮助系统。
? morisita-horn distance
horn(1966)修正了morisitad(1959)相似性度量,因而有了现在大家熟知的morista-horn的相似性或距离。这个距离度量的主要吸引力是它对取样工作相对不敏感(wolda 1981)。因此,对于不可能控制采样时间、面积或体积的情况有用。
morisita-horn指数对小物种的影响较小,这在很大程度上是因为该方法抗欠采样的原因。同时,它使该方法对小物种携带的模式不敏感。
? 在permanova和指示物种分析中增加块或组的大数目到1,000
? 新summary | write距离矩阵选项
? 物种面积曲线的自举置信区间
? pca选项将预测方程写入文本文件
? pca选项将特征值从随机化写入电子表格
? 使用peres-neto et al.(2006)方法在cca中增加r2perm调整方差
? 使用peres-neto et al.(2006)方法在rda中增加ezekiel和r2perm调整方差
? 添加了拟合方法,包括基于随机的方法到nms中
? dust bunny指数从多元正态到dust bunny分布作为出发度量
? 新summary | write距离矩阵选项:
√ 只写次对角线距离(对于连续样本)
√ 写对子对角线距离(配对样本)
图形功能扩展
? 应用按钮在不退出偏好对话框的情况下立即预览更改
? 保存群中心的分数为电子表格或文本文件
? 将图片保存为tiff格式
? species frequency label cutoff
? tick marks数量控制
? reorder legend
? 定制工具栏
pc-ord对电子表格中的生态数据进行多变量分析。pc-ord的重点是非参数工具、图形表示、随机化测试和自举置信区间的社区数据分析。除了用于转换数据和管理文件的实用程序之外,pc-ord还提供了许多统计数据包中不可用的排序和分类技术:cca、dca、指示物种分析、mantel试验、部分mantel试验、mrpp、pcoa、permanova、rda、双向聚类、twinspan、beals平滑、多样性指数、物种列表、许多排序叠加方法(定量、符号编码、颜色编码、网格、联合图、双情节、连续向量)、各种旋转方法、3d排序、bray-curtis排序、城市街区距离测量、物种面积曲线、树数据摘要、发布质量树图、自动驾驶模式的非度量多维范围(nms或nmds)。可以分析大型数据集。只要您计算机的内存够,大多数操作接受多32,000行或32,000列和多536,848,900个矩阵元素的矩阵。完整的手册包括上下文敏感的帮助系统。
? gower distance,忽略0,0
gower(1971)和legendre以及lengendre(1998)提出了一个有趣的但未经测试的gower相似系数的变体,忽略了0,0数据对。如果这些双零点被认为是不明确的信息,那么可以从系数的计算中排除它们。双零点的敏感性在社区生态学的分析中产生了不必要的影响
(legendre & legendre 1989, p. 253; mccune & grace 2002, p. 38, 51)。
legendre和legendre (1998)提出了gower相似系数(s19)的修改版本,称之为 asymmetrical,因为匹配零点的处理不同于非零值。它与gower系数相同,但不包括定量变量(0,0)对,因此,部分相似度的总和不是由p变量划分的,而是由p*非(0,0)对的数目来划分的。
请注意,这种“不对称”的感觉不同于矩阵对称性。如果legendre的非对称版本gower的相似性被转换为距离(或相异性),并用于建立距离矩阵,这仍然是对称矩阵。换句话说,项目a和b之间的距离与b和a之间的距离相同,即使使用gower的相似性的不对称版本。为了避免这种混乱,pc-ord使用菜单系统中的术语gower, ignore 0,0,并输出文件。
? morisita-horn distance
horn(1966)修正了morisitad(1959)相似性度量,因而有了现在大家熟知的morista-horn的相似性或距离。这个距离度量的主要吸引力是它对取样工作相对不敏感(wolda 1981)。因此,对于不可能控制采样时间、面积或体积的情况有用。