山东谷融电源有限公司
汤浅电池提示您注意蓄电池的事项
汤浅蓄电池荷电出厂,不得试图拆卸蓄电池避免发生危险,如不慎使蓄电池壳体破损,接触到酸液,请立即用大量清水冲洗,必要时立即就医。
为了防止电池内温升太高及电解液的损失太大,充电电流调得比较小,需要充电的时间较长,另一方面,充电时间太长,就会发生过充,为了防止因过充而损坏电池,需另设过充检测或定时电路。
不能将蓄电池放置于密封容器内使用,否则会有爆炸的危险。
不能使用有机溶剂清洗蓄电池。
汤浅电池提示您注意蓄电池的事项
汤浅蓄电池在放电时如果硫酸电解液温度较高,这就会使极板表面的pbso4在硫酸电解液中的过饱和度降低,而有利于形成疏松的硫酸铅结晶,使之在充电时生产粗大坚固的pbo2层,从而可延长极板活性物质的使用寿命。铅蓄电池在充电时如果电解液的温度过高,则会使电解液的扩散加快,极板板栅的腐蚀加剧,从而也就使铅蓄电池的使用寿命缩短。
多只蓄电池串联可获得高电压,安装时应注意使用绝缘工具,防止电击。
长期电池潴留,充电过程中长期过度充电和充电不足,使用大电流放电,极易导致电池固化。它的外观是:一个灯,一个充满电,我们称之为电池“假货损坏”。硫酸盐硫酸盐附着在板上,减少了电解质和板的反应区域,电池容量迅速下降。失水会增加电池的固化;硫化会增加电池的失水量,容易形成恶性循环。
安装时应拧紧螺母,以防止充放电时产生火花甚至使蓄电池发生爆炸
蓄电池不可倒置使用,否则会有电解液漏出
蓄电池寿命终止时,应妥善处理,随意遗弃会造成环境污染
在使用蓄电池的时候,大家应当注重以上几个方面事项要求,此外,如果蓄电池存放很久没有使用,会缓慢的放电,直至电量耗尽,因此广大用户好能够隔一段时间对蓄电池充电一次,这对于延长汤浅蓄电池的使用寿命是很有好处的。
汤浅蓄电池的维护与保养需注意哪些
汤浅蓄电池维护与保养需注意以下几点:
1、保持适宜的环境温度
据试验测定,环境温度一旦超过25℃,每升高10℃,汤浅蓄电池的寿命就要缩短一半。目前ups所用的蓄电池一般都是免维护的密封铅酸蓄电池,设计寿命普遍是5-10年,这在电池生产厂家要求的环境下才能达到。达不到规定的环境要求,其寿命的长短就有很大的差异。另外,环境温度的提高,会导致电池内部化学活性增强,从而产生大量的热能,又会反过来促使周围环境温度升高,这种恶性循环,会加速缩短电池的寿命。
2、定期充电与放电
通常来说,影响蓄电池寿命较大的因素是环境温度。一般电池生产厂家要求的优秀环境温度是在20-25℃之间。虽然温度的升高对蓄电池的放电能力有所提高,但付出的代价却是电池的寿命大大缩短。
汤浅蓄电池用在ups电源设备是长期处于浮充电状态,日久就会导致电池化学能和电能相互转化的活性降低,加速老化而缩短使用寿命。因此,一般每隔2-3个月应完全放电一次,放电时间可根据汤浅蓄电池的容量和负载大小确定。一次全负荷放电完毕后,按规定再充电8小时以上。 ups电源中的浮充电压和放电电压,在出厂时均已调试到额定值,而放电电流的大小是随着负载的增大而增加的,使用中应合理调节负载,比如控制微机等电子设备的使用台数。一般情况下,负载不宜超过ups额定负载的80%.在这个范围内,电池的放电电流就不会出现过度放电。
3、利用通讯功能
目前,绝大多数大、中型ups都具备和计算机通讯和程序控制等可操作性能。在微机上安装相应的软件,通过串/并口连接ups,运行该程序,就可以利用计算机与ups进行通讯。一般具有信息查询、参数设置、定时设定、自动关机和报警等功能。通过信息查询,可以获取市电输入电压、ups输出电压、负载利用率、电池容量利用率、机内温度和市电频率等信息;通过参数设置,可以设定ups基本特性、电池可维持时间和电池用完告警等。通过这些智能化的操作,大大方便了 ups电源及其蓄电池的使用管理。
4、及时更换有问题电池
当汤浅电池组中某个/些电池出现损坏时,维护人员应当对每只电池进行检查测试,排除损坏的电池。目前大中型ups电源配备的蓄电池数量,从3只到80只不等,甚至更多。这些单个的电池通过电路连接构成电池组,以满足ups直流供电的需要。更换新的电池时,应该力求购买同厂家同型号的电池,禁止防酸电池和密封电池、不同规格的电池混合使用。在ups连续不断的运行使用中,因性能和质量上的差别,个别电池性能下降、储电容量达不到要求而损坏是难免的。
汤浅铅酸蓄电池在后备系统运行中的问题
1)汤浅蓄电池寿命无法达到设计要求
蓄电池的实际放电容量低于额定容量的60%左右,经修复后性能无法恢复的蓄电池必须报废。一般当蓄电池的容量衰减到60%左右后,其性能会大幅衰减,并且很快就会失去充、放电能力,其表现为短时间很快充满电,又很快放电,不能储存电量,放电时间很短。
在实际中,蓄电池在三年时就会出现严重劣化,使用超过5年的蓄电池很少。原因是在使用中对蓄电池没有有效、合理地进行管理以及维护,造成蓄电池在早期出现劣化,并且没有及时发现落后电池,致使劣化积累、加剧,导致蓄电池过早报废。
汤浅铅酸蓄电池在后备系统运行中的问题
2)对蓄电池的运行情况、性能状况不明
汤浅蓄电池组中如果有落后的蓄电池,可以通过一定深度的放电、充电循环,在一定程度上减少落后的差别。但由于没有良好的管理手段,对于蓄电池内部性能参数,如蓄电池的内阻、当前的剩余容量,无法十分清楚地了解,所以相应的措施就无法实施。而对于阀控式铅酸电池来说,充电时内部产生的氧气流向负极,氧气在负极板处使活性物质海绵状铅氧化,并有效低补充了电解而失去的水。由于氧循环抑制了氢气的析出,而且氧气参与反应又生成水。这样虽然消除了爆炸性的气体混合物的排出问题,但是这种密封式使热扩散减少了一种重要途径,而只能通过电池壳壁的热传导作为放热的一途径。
3)对于单体电池而言,充电机制可靠性需要完善
由于目前国内直流系统的充电机制不是非常的完善,在实际中存在电压漂移的情况,蓄电池长期处于浮冲状态,如果浮冲电压偏离正常的范围,就会造成蓄电池的过充或欠充,长期的过充或欠充对于蓄电池的性能影响非常大。当蓄电池的寿命终止时,用万用表和电流表测试其电压、电流,它们的值均很低,电池的性能下降,蓄电池内可能产生短路、断路现象,应及时更换新的蓄电池。
4)单体电池之间不均衡
目前汤浅蓄电池组由数量很多的单体电池组成,实际运行中存在单体电池之间充电电压、内阻等差异较大的情况,特别是在浮充下,这种不均衡现象显得非常严重。个别落后电池充电不完全,如果没有及时发现并处理,这种落后就会加剧。如此反复,这种不均衡就加重,致使落后电池失效,从而引起整组蓄电池的容量过早丧失。当电池处于放电工作时,对于很多场合都需要知道电池的剩余容量及供电时间,根据电池的额定容量和放电电流的监测,不难实时计算出剩余容量,假定负载相对稳定,则换算出供电时间。一般情况下,电池制造厂都给出在不同放电信倍率下的汤浅蓄电池的容量。
汤浅电池是免维护蓄电池吗?
密封免维护蓄电池采用九十年代新设计的全密封构造及新式化制造工艺。使其具有高功能、无净化、长寿命、免维护、平安牢靠的杰出功能。
汤浅蓄电池采用铅钙合金栅架,充电时发生的水分解量少,水份蒸发量低,加上外壳采用密封构造,释放出来的硫酸气体也很少,所以它与传统蓄电池相比,具有不需添加任何液体,对接线桩头、电线腐蚀少,抗过充电才能强,起动电流大,电量储存工夫长等优点。
汤浅蓄电池因其在正常充电电压下,电解液释放出的气体,电极板有很强的抗过充电才能,而且具有电阻小、低温起动功能极强、比惯例蓄电池运用寿命长等特点,因此在整个运用时期不需添加蒸馏水,在充电运行正常状况下,不需从设备上拆下补充电。但在维护时应对其电解液的比重进行分析。
大少数免维护蓄电池在盖上设有一个孔形液体(温度补偿型)比重计,检查窗会依据电解液比重的变化而改动颜色。可以指示蓄电池的寄存电形态和电解液液位的高度。当比重计的指示眼呈绿色时,标明充电已足,汤浅蓄电池正常;当指示眼绿点很少或爲黑色,标明广东汤浅蓄电池需求充电;当指示眼显示淡黄色,标明蓄电池外部有毛病,需求维护或停止使用。
汤浅电池从出厂到运用可以寄存10个月以上,其电压与电容坚持不变,质量差的在出厂后的3个月左右电压和电容就会下降。在购置时尽量选择生产日期有6个月的,可以检测汤浅电池的电压和内阻能否到达规格书上的要求,若电压和内阻都有下降的状况则表明材质不好,那麽电池的质量一定不能达到要求。
经过小编的介绍,汤浅蓄电池为免维护铅酸蓄电池,汤浅电池运转过程中可以省下许多运维工作。
汤浅铅酸蓄电池在运行中注意参数监控
汤浅铅酸蓄电池在运行中注意参数监控
蓄电池运行参数包括蓄电池的单体电压、电池组电压、电流和环境温度等参数。目前,对于这些参数的测量主要依靠人工定期巡检和在线式电压检测仪来完成。电压、电流和环境温度是蓄电池的运行参数指标,也是蓄电池稳定运行的基本的保障。恶劣的运行环境将大大缩短蓄电池的使用寿命,加大蓄电池的安全隐患。环境温度过高,会加速蓄电池失水,造成蓄电池失效加速。在35℃时运行蓄电池的劣化将加速一倍;在55℃时,对于蓄电池浮充一个月所造成的劣化相当于在25℃时浮充一年的等级。同样,过高的充电电压也将大大加速蓄电池的劣化速度。在工业电源蓄电池检测领域中,除国际电工学会ieee1188将蓄电池阻抗测试列为日常检测内容外,美国的tia-92(数据中心通用基础设施建设规范2005年版)和我国的gb50174-2008(电子信息系统机房设计规范)也将蓄电池阻抗在线监测列为数据中心蓄电池的重要监测指标。当充电电压或环境温度过低时,蓄电池的容量饱和度很难达到100%,也直接体现为蓄电池放电容量不足。过放电对于蓄电池的损害是非常大的。对于串联使用的蓄电池组,由于蓄电池个体之间的差异,放电过程中不同蓄电池达到终止电压的时间差异很大。电池组中的某些劣化蓄电池达到放电终止电压的时间往往大大提前于其他蓄电池。以电池组电压为单位计算放电终止电压,易造成蓄电池组中部分劣化蓄电池过放电甚至是深度过放电,加速蓄电池组中故障蓄电池的出现。放电过程中,当电池组中出现达到终止电压的单体蓄电池时应停止放电,而不是以电池组电压为参考标准。