人脸技术流程
人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
人脸识别系统适用范围: 公园、工厂、超市、小区广场、会议中心、体育场馆、学校、、住宅区、商业街、大型农贸市场等公众活动和聚集场所的重要部位,酒店(宾馆)、餐饮、场所、办公楼的大堂出入口、电梯和其他主要通道等室内外范围的监控录像用途。
人脸识别技术的核心实际为“局部人体特征分析”和“图形/识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。般要求判断时间低于1秒。
人脸识别过程般分三步:
(1)先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(faceprint)编码储存起来。
(2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。
(3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百中确地辨认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。
人脸识别系统特点: a.集成了2种人脸检测算法,3种人脸识别算法,并为添加新算法提供了开放接口。 b.为系统设计的人脸信息数据库管理系统采用文档结构具有易于查询易于追加方便更新的特点,具有推广价值。 c.基于该系统设计了脆弱水印保护人脸图像数据库和保存额外信息方案,提高了安性,丰富了人脸图像信息内容。 该研究在综合测试系统的基础上实现网络化人脸识别系统,为商业应用提供网络人脸识别原型系统。该系统中,网络传输模块只传输有用的人脸信息,与传统的监控系统传输压缩视频相比,大大的降低了数据传输量。 该研究以人脸识别算法综合测试系统为实验平台,以网络人脸识别系统为原型,提出了联多模态并行计算人脸识别体系结构,该体系结构有良好的识别效率和鲁棒性。理想情况下该体系结构可以达到100%的识别率,而且良好的可扩展性使得识别速度几乎不受人脸信息数据库规模限制。
-/gbajffh/-